Pfaffian and Hafnian Identities in Shuffle Algebras

نویسندگان

  • Jean-Gabriel Luque
  • Jean-Yves Thibon
چکیده

Chen’s lemma on iterated integrals implies that certain identities involving multiple integrals, such as the de Bruijn and Wick formulas, amount to combinatorial identities for Pfaffians and hafnians in shuffle algebras. We provide direct algebraic proofs of such shuffle identities, and obtain various generalizations. We also discuss some Pfaffian identities due to Sundquist and Ishikawa-Wakayama, and a Cauchy formula for anticommutative symmetric functions. Finally, we extend some of the previous considerations to hyperpfaffians and hyperhafnians.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Pfaffian-Hafnian Analogue of Borchardt's Identity

We prove Pf ( xi − xj (xi + xj) ) 1≤i,j≤2n = ∏ 1≤i<j≤2n xi − xj xi + xj · Hf ( 1 xi + xj ) 1≤i,j≤2n (and its variants) by using complex analysis. This identity can be regarded as a Pfaffian–Hafnian analogue of Borchardt’s identity and as a generalization of Schur’s identity.

متن کامل

The Hafnian and a Commutative Analogue of the Grassmann Algebra

A close relationship between the determinant, the pfaffian, and the Grassmann algebra is well-known. In this paper, a similar relation between the permanent, the hafnian, and a commutative analogue of the Grassmann algebra is described. Using the latter, some new properties of the hafnian are proved.

متن کامل

Pfaffians, Hafnians and Products of Real Linear Functionals

We prove pfaffian and hafnian versions of Lieb’s inequalities on determinants and permanents of positive semi-definite matrices. We use the hafnian inequality to improve the lower bound of Révész and Sarantopoulos on the norm of a product of linear functionals on a real Euclidean space (this subject is sometimes called the ‘real linear polarization constant’ problem). -

متن کامل

Four Symmetry Classes of Plane Partitions under One Roof

In previous paper, the author applied the permanent-determinant method of Kasteleyn and its non-bipartite generalization, the Hafnian-Pfaffian method, to obtain a determinant or a Pfaffian that enumerates each of the ten symmetry classes of plane partitions. After a cosmetic generalization of the Kasteleyn method, we identify the matrices in the four determinantal cases (plain plane partitions,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008